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We theoretically investigate a single fluorescent molecule as a hybrid quantum optical device, in
which multiple external laser sources exert control of the vibronic states. In the high-saturation
regime, a coherent interaction is established between the vibrational and electronic degrees of free-
dom, and molecules can simulate several cavity QED models, whereby a specific vibrational mode
plays the role of the cavity mode. Focusing on the specific example where the system is turned into
an analogue simulator of the quantum Rabi model, the steady state exhibits vibrational bi-modality
resulting in a statistical mixture of highly non-classical vibronic cat states. Applying our paradigm
to molecules with prominent spatial asymmetry and combining an optical excitation with a THz(IR)
driving, the system can be turned into a single photon transducer. Two possible implementations
are discussed based on the coupling to a subwavelength THz patch antenna or a resonant metama-
terial. In a nutshell, this work assesses the role of molecules as an optomechanical quantum toolbox
for creating hybrid entangled states of electrons, photons, and vibrations, hence enabling frequency
conversion over very different energy scales.

I. INTRODUCTION

Molecules are naturally complex systems with transi-
tions at different energy scales, corresponding to the ex-
citation of vibrational, spin, or electronic degrees of free-
dom. This articulated energy diagram can be controlled
and synthetically engineered, making the molecular plat-
form increasingly attractive also for the development of
quantum technologies [1–3].

At low temperatures, the lifetime-limited optical tran-
sition of single polycyclic aromatic hydrocarbon (PAH)
fluorescent molecules is exploited to generate indistin-
guishable photons, or for quantum sensing applica-
tions [4–7]. Even at room temperature, probing single
molecules by means of ultrafast spectroscopy, the coher-
ence of vibrational wavepackets has been observed[8–11].

At the intersection between these regimes, the field of
molecular optomechanics aims to exploit the interaction
between optical and mechanical degrees of freedom. A
seminal experimental work in this direction is the real-
ization of the single-molecule optical transistor in Ref.
[12], or the recent results described in Ref. [13], showing
IR to optical transduction based on a doubly-resonant
surface-enhanced-Raman-scattering effect [14–17].

In this work, we theoretically show that in the
high-saturation regime of the optical transition, quan-
tum coherence between vibrational and electronic states
can be established, leading to the formation of highly
non-classical vibrational-electronic (vibronic) entangled
states. The system becomes an analogue of a cavity
QED system, where the electronic two-level transition
plays the role of the two-level atom and the vibrational
mode represents the cavity bosonic mode. The type
of coherent interaction between them can be engineered
by controlled light beams at different frequencies and in

different spectral regimes, simulating quantum-Rabi-like
Hamiltonians, with a similar approach to what was dis-
cussed in Ref. [18] (albeit in the context of trapped ions
reservoir engineering). We hence present the molecule’s
multi-frequency driving as a quantum toolbox to tailor the
dynamics and the steady state of the vibronic degrees of
freedom. In this way, we explicitly show how molecular
vibrations can span interesting quantum states, such as
Schrödinger cat states, potentially interesting for quan-
tum computing [19–21] and quantum metrology [22].

The time scales set by the fast (picosecond) vibra-
tional relaxation push the system’s dynamics to essen-
tially ultra-fast time scales, making it hard to have di-
rect measurements in conventional quantum optical se-
tups [3]. Natural observables such as hybrid vibronic
vacuum Rabi oscillations [23] represent prohibitive mea-
surements. However, the molecule’s emitted fluorescence
is sensibly altered in this regime, becoming indirect ev-
idence of the coherently populated vibrational levels.
Even more striking, after establishing a finite vibronic
population using two lasers at different frequencies, the
addition of a supplemental bias laser can induce quantum
jumps [24] between vibrational states, following slow dy-
namics. This analysis, without being fully exhaustive, is
sufficient to show that hybrid vibronic features can also
be explored with conventional quantum optical setups.

Finally, when a laser at optical frequencies is combined
with a source in a lower-frequency regime, like at THz
frequencies, this platform implements a quantum trans-
ducer. The map over a cavity QED model provides now
a simple language to identify and characterize the opti-
mal conditions and figures of merit to reach transduction
at the single-photon level. Leveraging on the versatil-
ity of fluorescent molecules with respect to the coupling
with complex photonic structures [7, 25–29], we propose
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Figure 1. Schematic representation of the considered setup.
Multiple lasers drive a fluorescent molecule at different fre-
quencies in the optical and THz range. The emitted fluo-
rescence is in the optical domain, and its spectrum consists
of several Raman peaks (Stokes and anti-Stokes) displaced
around the molecule’s HOMO-LUMO transition frequency,
dubbed as zero-phonon line. A frequency-filtered detection is
performed to investigate the state of the molecule. The spec-
trum sketched in the top is a fit from Eq. (E4) using a set
of parameters taken from Ref. [30] (see Apps. A-E for major
details). The DBT molecule is shown here as a proxy of a
single-photon emitter large organic molecule.

two concrete experimental implementations based on cur-
rently available patch antenna quantum cascade lasers
and resonant metamaterials that could potentially real-
ize a single photon THz-to-optical transducer (and thus
THz single photon detector).

The article is structured as follows. In Sec. II,
we present the general model describing the molecular
setup. In Sec. III, we show how to engineer the interac-
tions between the electronic and vibrational levels of the
molecules, simulating various cavity QED toy models. In
Sec. IV, we explore a bi-modal vibrational steady-state
using the quantum trajectory method. In Sec. V, we
develop the general theory of a molecular THz-to-optical
photon transducer. In Sec. VI, we present the possi-
ble experimental implementation of the transducer with
THz patch antennas or resonant metamaterials. Finally,
in Sec. VII, we summarize our conclusions.

II. MODEL

We consider a single molecule defined by an electronic
transition between the molecular electronic ground |g⟩
and excited states |e⟩ (HOMO-LUMO transition), which
frequency is ω0 = ωe−ωg (here ℏωg, ℏωe are the eigenen-

ergies of the electronic ground and the excited state).
Due to the Born-Oppenheimer approximation, to each
molecular orbital is associated a multi-dimensional po-
tential energy surface (PES), describing the vibrational-
mode dynamics [31–33]. For a highly rigid molecule (see,
for example, the dibenzoterrylene (DBT) molecule [3],
whose structure is represented in Fig. 1), each PES has
a well-defined minimum that can be approximated by a
parabolic potential, making each vibrational mode be-
have as a harmonic oscillator with a specific frequency
ωv. The displacement in the minima of the vibrational
coordinate between the HOMO and LUMO PES gives
rise to an energy shift quantified by ε1.

Considering a single vibrational degree of freedom,
this construction results in a two-level system coupled
through a conditional displacement with a single har-
monic oscillator. The system Hamiltonian is given by
the Holstein model [34–39]

Hmol = ℏω0σ̂
†σ̂ + ℏωvb̂

†b̂+ ε1(b̂+ b̂†)σ̂†σ̂. (1)

Here σ̂ = |g⟩⟨e| is the electronic rising operator, and

b̂ is the annihilation operator of a vibrational excita-
tion within the PES mentioned above and fulfilling the

Bosonic commutation relation [b̂, b̂†] = 1. To fulfill the
Born-Oppenheimer approximation, the frequencies must
respect the order ω0 ≫ ωv. Moreover, we have assumed
that the two PESs have minima with the same curva-
ture. The general case is treated in Ref. [39], where
the Holstein Hamiltonian is corrected by an additional
non-linear term.

As already anticipated in the introduction in Sec. I,
our discussion is developed with a special focus on PAH
molecules [3], whose vibrational levels are in the THz
range, and the purely electronic transition varies from
optical to near infrared frequencies. For simplicity, in
the following, we will hence assume the vibrational mode
and the electronic transition to be in the THz and in the
optical domain, respectively.

The molecule can be driven simultaneously by mul-
tiple optical lasers and a THz source with frequencies
{ωLℓ

}|(ℓ=1,2...NL), ωTHz, respectively, described by the
time-dependent Hamiltonian contributions

Hopt =

NL∑
ℓ=1

ℏΩLℓ
cos (ωLℓ

t)
(
eiϕℓ σ̂ + e−iϕℓ σ̂†) , (2)

HTHz = ℏΩTHz cos (ωTHzt)
(
eiθ b̂+ e−iθ b̂†

)
. (3)

Here ΩLℓ
, ΩTHz are the ℓ-th optical and THz Rabi fre-

quencies and ϕℓ, θ are arbitrary phases introduced for
completeness. Without loss of generality, in this work,
we fix ϕℓ = θ = 0.

The setup presented above is pictorially represented in
Fig. 1.
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A. Polaron dressing: ZPL, Stokes and anti-Stokes
side-bands

From nanomechanics to quantum dots and molecular
cavity QED, a common technique to treat the coupling
between optics and mechanics at the quantum optical
level is the so-called polaron transformation [40–44]. Ap-

plying the unitary operator U = exp
[
η(b̂− b̂†)σ̂†σ̂

]
we

transform the vibrational and electronic operators as fol-
lows [43]

b̂ 7→ b̂pol = b̂− ησ̂†σ̂ σ̂ 7→ σ̂pol = D̂(η)σ̂, (4)

where η = ε1/(ℏωv) is the square root of the Franck-

Condon factor [36], and D̂(η) is the displacement opera-
tor [45], that can be written as [46]

D̂(η) = e−
η2

2

+∞∑
m,m′=0

(ηb̂†)m

m!

(−ηb̂)m
′

m′!
. (5)

The polaron frame is particularly useful since it diag-
onalizes the Holstein Hamiltonian [43], disentangling the
electronic and the vibration degrees of freedom

UHmolU
† = ℏω0σ̂

†σ̂ + ℏωvb̂
†b̂. (6)

From here on, σ̂ and b̂ represent operators acting in the
polaron basis. All the information regarding the vibra-
tional coupling is then moved to the driving terms, result-
ing in an optical Hamiltonian that is essentially equiva-
lent to those of trapped ions [47]

Hopt ≈
NL∑
ℓ=1

ℏΩLℓ

2

(
σ̂e−η(b̂−b̂†)−iωLℓ

t + h.c
)
. (7)

For the moment, we have assumed the rotating-wave ap-
proximation (RWA) without too many justifications, but
it will be clarified below.

The Hamiltonian in Eq. (7) can be interpreted as fol-
lows: Whenever an optical photon is absorbed or emit-
ted, it induces a recoil in the molecular vibrations, hence
displacing its vibration coordinate. The amount of dis-
placement in the recoil process is quantified by η, which
takes the role of the Lamb-Dicke parameter [47, 48],
whose square is the Franck-Condon factor. Depending
on the specific vibrational mode, typical values for DBT
in anthracene matrices are η ∼ 0.1− 0.3 [30, 36].

The system is then in the so-called Lamb-Dicke regime,
where η < 1, and the polaron interaction can be lin-
earized at first order in η, discarding higher order contri-
butions in the expansion of Eq. (5). In Sec. IV, we will
see how higher order corrections can nevertheless play
a role. The polaron rising operator σ̂pol in Eq. (4), in
the interaction picture with respect to the free polaron
Hamiltonian of Eq. (6), can be reduced to only three
contributions

σ̂pol(t) ≈ σ̂e−iω0t

+ η
(
σ̂b̂†e−i(ω0−ωv)t − σ̂b̂e−i(ω0+ωv)t

)
+O(η2).

(8)

These three terms represent the rising operator of the
ZPL, the Stokes and anti-Stokes transition, respectively.
For this reason, from here on, we focus mostly on the case
where we have at most three optical driving terms, NL =
3. Their resonance and Rabi frequencies will be called
ZPL, Stokes and anti-Stokes ωLℓ

= (ωzpl, ωS, ωAS), ΩLℓ
=

(Ωzpl,ΩS,ΩAS), with ωzpl ≈ ω0, ωS ≈ ω0 − ωv, ωAS ≈
ω0 + ωv.
Given this structure, the RWA naturally applies to

each ZPL, Stokes and anti-Stokes term by safely assum-
ing ΩLℓ

≪ ω0, ω0±ωv, yielding Hopt ≈ Hzpl+HS+HAS,
where

Hzpl =
ℏΩzpl

2

(
σ̂eiωzplt + σ̂†e−iωzplt

)
, (9)

HS =
ℏgS
2

(
σ̂ b̂†eiωSt + σ̂† b̂e−iωSt

)
, (10)

HAS =
ℏgAS

2

(
σ̂ b̂eiωASt + σ̂† b̂†e−iωASt

)
. (11)

Here, we have introduced the effective Stokes/anti-Stokes
coupling constants

gS,AS = ηΩS,AS. (12)

If the frequencies ω0, ωS, ωAS are assumed to be well sep-
arated from each other, one can safely sum all these con-
tributions to obtain the compact approximated form of
Eq. (7). With the same level of approximation, we also
obtain the THz drive, which reads

HTHz ≈
ℏΩTHz

2

(
b̂eiωTHzt + b̂†e−iωTHzt

)
. (13)

Recasting the system in these terms allows us to sin-
gle out the ZPL, Stokes, and anti-Stokes side-bands and
the resonant processes activating them. The Hamiltonian
with optical driving presented above leads to a Raman
side-band toolbox for the vibrational state manipulation
in very close analogy to what was developed for trapped
ions [18, 47, 48] and is schematically represented in Fig.
1, upper panel.

B. Frequency filtering and detection

In a typical quantum optics experiment with fluores-
cent molecules, the photon detection is performed by ex-
ploiting the rich multi-frequency emission spectrum. Fil-
tering away the light scattered at the driving frequencies
and detecting fluorescence in a different spectral range
allows for background-free detection and high signal-to-
noise ratios, reaching the single-molecule regime [49]. In
Fig. 1 lower panel, we schematically show this concept,
where the molecule’s spectrum exhibits several vibra-
tional modes Stokes side peaks and their respective anti-
Stokes counterparts, while the detection focuses only on
the ZPL and the (anti)Stokes of a specific mode.
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Following the calculations outlined in App. A, the flu-
orescence (photon counting) rate detected through the
filter is given by the formula:

ΓF = pclickγ0⟨N̂F ⟩, (14)

where pclick is the probability of generating a photocur-
rent upon incidence of a single photon on the detector,
and γ0 is the ZPL spontaneous emission radiative rate.
For a narrow filter centered either on the ZPL, Stokes, or
anti-Stokes side-bands, the filtered photon number oper-
ator N̂F is identified by the corresponding side-band. In
this way, we can define the ZPL, Stokes, and anti-Stokes
photon number operator as

N̂zpl = σ̂†σ̂,

N̂S = η2σ̂†σ̂
(
1 + b̂†b̂

)
,

N̂AS = η2σ̂†σ̂ b̂†b̂.

(15)

Here, we see that the Stokes and anti-Stokes photon num-
bers are multiplied by the Franck-Condon factor, η2, re-
sulting in a strong suppression (typically one or two order
of magnitudes) of the detected Stokes/anti-Stokes shifted
fluorescence with respect to the ZPL one.

The Stokes and anti-Stokes photon number operators
are a combination of electronic and vibrational opera-
tors, bringing direct information about the molecular vi-
brational state through the emitted fluorescence. We im-
mediately see that the Stokes photon number is propor-
tional to the ZPL occupation, ⟨N̂S⟩ ∼ ⟨σ̂†σ̂⟩, indicating
a finite fluorescence also when the vibrational mode is
empty. On contrary, the anti-Stokes photon number is
zero ⟨N̂AS⟩ = 0 if the vibrational mode is in the vacuum

state, with zero population ⟨b̂†b̂⟩ = 0, becoming a clear
unambiguous probe of the vibrational occupation.

C. Dissipative dynamics

A molecule trapped in a solid-state matrix interacts
with the surrounding environment both electromagneti-
cally and mechanically, so it has various dissipation chan-
nels where it can release its excitations. The system is
thus intrinsically driven-dissipative and described by a
master equation for its density matrix ρ̂ (see App. B for
major details):

ℏ∂tρ̂ = LH(ρ̂) + Lγ0(ρ̂) + Lγv(ρ̂). (16)

The coherent dynamic (including the driving terms) is
obtained by summing up all the contributions in the
Hamiltonian as follows

LH(ρ̂) = −i [Hmol +Hopt +HTHz, ρ̂] , (17)

while the electronic and vibrational dissipation are de-
scribed by the two Lindbladian terms

Lγ0
(ρ̂) ≈ ℏγ0

2

[
2σ̂ ρ̂ σ̂† − {σ̂†σ̂, ρ̂}

]
, (18)

Lγv(ρ̂) ≈
ℏγv
2

[
2b̂ ρ̂ b̂† − {b̂†b̂, ρ̂}

]
. (19)

Here, the LUMO-HOMO electronic decay rate coincides
with the spontaneous decay rate γ0 while in principle the
electronic decay is also affected by non-radiative losses.
However, considering PAH molecules at cryogenic tem-
peratures, the latter can be neglected [50]. On the con-
trary, γv is the vibrational dissipation rate and is com-
pletely dominated by non-radiative processes, where the
vibrational excitation decays into the phononic modes of
the surrounding matrix. For this reason, they typically
exceed the electronic decay by a few order of magnitude
γv ≫ γ0 [3, 30, 36], becoming the dominant frequency
scale of the dissipative processes. We take inspiration
from Refs. [30, 36] to fix the dissipation rates through
the whole paper as

γ0/(2π) ≈ 40MHz γv/(2π) ≈ 10GHz, (20)

holding at T ≈ 1K [36]. It is worth noticing that this hi-
erarchy in the dissipations represents a major difference
with the physics of trapped ions, where the vibrational-
phononic modes have instead negligible losses with re-
spect to the optical one [18].

The two expressions above in Eq. (18)-(19) are ap-
proximated forms, as explained in detail in App. B. In
general, they should involve the polaron operator in Eq.
(4), accounting for the vibrational dressing of the elec-
tronic jump operator σ̂. However, with the value of the
electronic decay rate given above, γ0/(2π) ≈ 40MHz, all
the contributions from the polaron expansion in Eq. (5),
scaling at least with η2 ≪ 1, are completely negligible
[43, 51]. Although the approximation for the vibrational
dissipation is slightly different, as explained in App. B,
it yields the same conclusion.

III. HYBRID QUANTUM STATES
ENGINEERING

In this section, we analyze the dynamics of the system
when continuously driven by different combinations of
the Stokes, ZPL, and anti-Stokes lasers in Eqs. (10)-(9)-
(11), but always keeping the THz radiation at zero input,
ΩTHz = 0.

The main focus is to exploit this configuration to ex-
cite different types of vibrational steady states, following
the dynamics of a vast class of generalized quantum Rabi
models [52]. Off-resonant pumping and stimulated reso-
nant Raman scattering [53] are specific examples that fall
into this framework, but the phenomenology can be arbi-
trarily extended by varying the parameter range and by
playing with the possible combinations of laser drivings.

In this way, we create a new toolbox for the coherent
manipulation of vibronic degrees of freedom at the single
quantum level, paving the way for multi-scale quantum
engineering in molecules.

After composing a specific Hamiltonian, this is plugged
into the open-dissipative dynamics given by the master
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Relevant driving regime(a) (b)

(c) (d) (e)

Stokes driving

Stokes
+
ZPL

Stokes
+
anti-Stokes

Stokes
+
anti-Stokes
+
anti-Stokes2

Figure 2. (a) Level scheme representation of the Stokes
driving. (b) Photon counting rate of the fluorescence sig-
nal (see App. C). Red solid line: ZPL resonant excitation
and Stokes detection, as described by Eq. (C1). Blue solid
line: incoherent (off-resonant) excitation and ZPL detection,
as described by Eq. (C3). Parameters: γ0/(2π) = 40MHz,
γv/(2π) = 10GHz, η = 0.3, pclick = 0.05. The elec-
tronic dipole transition strength is ξ0 = 0.23 nm, resulting
in Ωs

zpl/(2π) ≈ 2.8× 10−2 GHz at saturation (ns
zpl ≈ 1). The

incoherent saturation anti-Stokes Rabi frequency is instead at
Ωs

AS/(2π) ≈ 2GHz for the same parameters. Level scheme of
combined (c) Stokes and ZPL drivings, (d) Stokes and anti-
Stokes drivings, (e) Stokes, anti-Stokes and second order anti-
Stokes (AS2) drivings.

equation in Eq. (16), thus providing the complete de-
scription of the system’s evolution. Looking at the steady
state of the system, ∂tρ̂ss = 0, we discuss some paradig-
matic examples of this phenomenology.

A. Stokes coupling

The fundamental building block for hybrid quantum
states engineering is the Stokes driving in Eq. (10), which
realizes a coherent conversion of the electronic excitation
into a vibrational one (and vice-versa). This basic level
scheme is represented in Fig. 2(a). Switching to a ro-
tating frame, in the polaron framework the molecular
Hamiltonian takes the shape of the Jaynes-Cummings
model [54]

Hmol +HS = HJC

= ℏ∆0σ̂
†σ̂ + ℏ∆vb̂

†b̂+
ℏgS
2

(
σ̂b̂† + h.c.

)
.

(21)

Here the detunings are ∆0 = ω0 − ω̃0, ∆v = ωv − ω̃v,
where the two arbitrary rotating frame’s frequencies
ω̃0, ω̃v are chosen to fulfill ω̃0 − ω̃v = ωS.

(a) (b)

(c) (d)
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gS/(2 ) = 8 GHz

gS/(2 ) = 10 GHz

gS/(2 ) = 15 GHz

0 10 20-10-20
0/(2 ) - [GHz]

0 10 20-10-20
0/(2 ) - [GHz]

/(2 ) - [GHz]v/(2 ) - [GHz]v

Figure 3. Stokes fluorescence ΓS/(2π) = pclickγ0/(2π)⟨NS⟩
(in kilo-counts per second [kcps]) for the combined Stokes-
ZPL drivings, (a) under strong ZPL driving, (b) under weak
ZPL driving, (a-b) as a function of ZPL detuning ∆0, with
∆v = ∆0 (sweep on ωzpl). (c) Under strong ZPL driving, (d)
under weak ZPL driving, (c-d) as a function of the vibrational
detuning ∆v, fixing ∆0 = 0 (sweep on ωS). Parameters (all):
γ0/(2π) = 40MHz, γv/(2π) = 10GHz, η = 0.3, pclick = 0.05.

To observe any coherent interaction with the vibra-
tional states, we need to ensure that the energy scale
of the conservative dynamics in Eq. (21) overcomes the
dissipations described in Sec. II C by the term γv hence
yielding the following condition:

gS ≳ γv. (22)

In what follows we will discuss a practical example.
For a DBT molecule the brightest vibrational modes have
γv/(2π) ≈ 10GHz and a Franck-Condon factor η2 ≈ 0.1
[30, 36]. Combining Eq. (12) with Eq. (22), we ob-
tain a condition on the Rabi frequency for the Stokes
laser of ΩS/(2π) ≳ 33GHz. Using the relation between
the Rabi frequency and the electric field intensity in Eq.
(D2) from App. D, combined with the typical dipole
strength of the DBT optical transition ξ0 ≈ 0.23nm [3],
we obtain the condition on the required laser intensity
IS ≳ 1MW/cm2. In a standard experiment [3], this
corresponds to the high saturation regime of the off-
resonant excitation (also known as incoherent pump, or
anti-Stokes electronic transition as we will see in Sec.
III C), as highlighted in green in Fig. 2(b).

B. Jaynes-Cummings vacuum Rabi splitting

As a first case study, we probe the Stokes-JC Hamil-
tonian in Eq. (21) with another laser with frequency
ωzpl, resonant with the HOMO-LUMO electronic tran-
sition ω0. The level scheme is represented in Fig. 2(c),
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and the total Hamiltonian reads

H = ℏ∆0σ̂
†σ̂ + ℏ∆vb̂

†b̂

+
ℏgS
2

(
σ̂b̂† + h.c.

)
+

ℏΩzpl

2
(σ̂ + h.c.) .

(23)

The detunings are given by ∆0 = ω0 − ωzpl and ∆v =
ωv − (ωzpl − ωS).

In Fig. 3 the Stokes shifted fluorescence is plotted,
ΓS = pclickγ0⟨NS⟩, for the combined ZPL-Stokes driv-
ings as a function of electronic and vibrational detunings,
∆0,∆v, and for different Stokes coupling frequencies, gS.
Specifically, in Fig. 3(a), we show a sweep in the ZPL
frequency ωzpl, resulting in a simultaneous sweep of both
electronic and vibrational detunings ∆0 = ∆v. For mod-
erately strong ZPL driving frequency Ωzpl/(2π) ≈ 4GHz,
the fluorescence exhibits the characteristic Rabi splitting
due to the vibrational dressing of the electronic excita-
tion. The new two peaks are situated at ∆0 ≈ ±gS,
as recently observed in Ref. [55], being present also at
smaller ZPL power with a sensibly suppressed fluores-
cence amplitude, as visible in Fig. 3(b).

On the contrary, keeping ∆0 = 0 fixed and scanning
the Stokes driving frequency ωS (i.e. scanning the vibra-
tional detuning only ∆v), one observes a large depletion
of the fluorescence around ∆v = ∆0 = 0. This behavior
is shown in Fig. 3(c-d).

Although this configuration provides evidence for the
electronic-vibrational coherent hybridization through the
Rabi splitting, the vibrational state of the molecule re-

mains always very close to its vacuum state, ⟨b̂†b̂⟩ ≈ 0
(see App. F for a simple semi-classical estimation). As a
consequence, the anti-Stokes fluorescence is expected to
be almost zero ⟨NAS⟩ ≈ 0.

C. Generalized Rabi model and vibrational
bi-modality

The second most relevant example is represented in
Fig. 2(d) and is given by combining the Stokes and the
anti-Stokes driving terms in Eqs. (10)-(11), fixing to zero
the ZPL-drive Ωzpl = 0. Defining the detunings ∆0 =
ω0 − (ωAS + ωS)/2 and ∆v = ωv − (ωAS − ωS)/2, the
system is expressed in the form of a generalized Rabi
Hamiltonian

HgRabi = ℏ∆0σ̂
†σ̂ + ℏ∆vb̂

†b̂

+
ℏgS
2

(
σ̂b̂† + h.c.

)
+

ℏgAS

2

(
σ̂†b̂† + h.c.

)
.
(24)

The anti-Stokes drive introduces an anti-Jaynes-
Cummings interaction in Eq. (24), which falls in the cat-
egory of two-mode squeezing parametric amplifiers [45].
Considering first gS = 0, due to the large mismatching
between vibrational and optical dissipation γv ≫ γ0 the

vibrational mode is almost empty ⟨b̂†b̂⟩ ≈ 0. Having a
very dissipative mode without any relevant dynamics, we
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Figure 4. (a) Stokes, ZPL and anti-Stokes fluorescence (in
kcounts per second [kcps]) as a function of ∆0, with ∆v = ∆0

(sweep on ωAS). (b) Normalized Wigner function Wv(q, p) of
the vibrational steady-state at ∆v = ∆0 = 0 (other parame-
ters are the same as in (a)). Parameters: γ0/(2π) = 40MHz,
γv/(2π) = 10GHz, gAS/(2π) = 15GHz, η = 0.3, pclick = 0.05.

can consider it as a virtual level tracing it away by per-
forming a Born-Markov approximation. As a result, we
obtain an effective Lindbladian incoherent pumping term
(see App. C) that accounts for what is usually termed in
experiments as off-resonant pumping [5].

When the Stokes coupling is also non-zero, gS ̸= 0,
and sufficiently strong with respect to the dissipation,
gS ≃ γv, the vibrational mode is populated by a finite
amount of excitations, and the vibrational dynamics can-
not be traced away. The mechanism works as follows:
the anti-Stokes laser pumps up the electronic state to-
gether with a quantum of vibration; the strong Jaynes-
Cummings interaction converts the electronic excitation
into a new vibrational quantum. The process is then
repeated, starting from a vibrational state that already
contains two quanta of excitations and thus leading to a
net increase of the vibrational population.

In Fig. 4(a), we look at the emitted Stokes, ZPL, and
anti-Stokes fluorescence as a function of the anti-Stokes
resonance frequency ωAS and for various values of the
Stokes coupling gS. The anti-Stokes coupling is fixed to
gAS/(2π) = 15GHz such that the system is deep into the
saturation regime.

At gS = 0 the system is well described by the al-
ready mentioned incoherent pumping term in Eq. (C4)-
(C6), and the fluorescence is strong both in the ZPL and
the Stokes channels (Fig. 4(a) left and central panel),
whereas the anti-Stokes emission is almost zero (Fig.
4(a) right panel). When the Stokes drive is switched on,
gS ̸= 0, the Stokes emission increases, sensibly exceeding
the saturation value described by the incoherent pump,
while the ZPL fluorescence is reduced. Differently from
the pure JC model discussed in the previous subsection,
here we observe sizable emission also at the anti-Stokes
frequency, Fig. 4(a-right panel), indicating the accu-
mulation of a finite population in the vibrational mode,
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⟨b̂†b̂⟩ ≠ 0. To better grasp the specific quantum state
which is populated, in Fig. 4(b) we plot the Wigner func-
tion of the vibrational steady-state Wv(q, p) as a function
of the quadrature variables (see Ref. [56], or the on-
line QuTip docs for the detailed definition). When both
Stokes and anti-Stokes couplings exceed the vibrational
dissipation, gS, gAS ≥ γv, the steady state is character-
ized by a bimodal vibrational Wigner function. Similarly
to photonic non-linear Kerr oscillators under two-photon

drive [57], the Z2 symmetry, σ̂ 7→ −σ̂ and b̂ 7→ −b̂, of the
dissipative Rabi model [58] ensure a symmetric steady
state which, as we will see in the following, is a statisti-
cal mixture of vibrational cat states [59].

It is worth pointing out that, under the condition of
equal Stokes and anti-Stokes drivings amplitudes, gS =
gAS = g, the Hamiltonian in Eq. (24) becomes the sym-
metric quantum Rabi model. This is one of the most
paradigmatic models to study light-matter interactions
at the quantum level [52, 58, 60–65], making molecules a
valuable quantum simulation platform.

IV. VIBRATIONAL CAT STATES AND
QUANTUM JUMPS

While the anti-Stokes emission is a clear signature of
a finite vibrational population, observing the bimodality
of the Wigner function in Fig. 4(b) is a subtle issue. As
remarked in Ref. [59], the Z2 symmetry of the general-
ized Rabi model in Eq. (24), preserved by the molecule’s
main dissipation channels described in Sec. II C, prevents
to observe the bimodality in any quantity averaged over
the steady-state density matrix. To circumvent this lim-
itation, one can use the information acquired by contin-
uously monitoring the system, unraveling the time evo-
lution of the density matrix, and analyzing the behavior
of each single quantum trajectory [66–68].

To this end, we make use of the Monte-Carlo algo-
rithm implemented in QuTip [56] to solve the Stochas-
tic Schrödinger equation related to the dissipative dy-
namics described in Sec. II C, where the Hamiltonian is
given by the symmetric Rabi model in Eq. (24) with
gS = gAS = g. We use |Ψ(t)⟩ to denote a single unrav-
eled trajectory, for which the steady-state density ma-
trix is given by averaging over its multiple realizations
ρ̂ss ∼

∑
Ψ |Ψ(t)⟩⟨Ψ(t)|.

It turns out that the bimodality is visible as a jump-
ing signal (telegraph signal [24]) in the time evolution of

the Z2 parity operator P̂ = exp
[
iπ(σ̂†σ̂ + b̂†b̂)

]
, as for

the two-photon Kerr resonator [57, 59]. As shown in Fig.
5(a), starting from an arbitrary initial state, after suf-

ficient long time the expectation value of ⟨Ψ(t)|P̂|Ψ(t)⟩
enters in a steady random jump dynamics between ±1
values.

An intuitive understanding is provided by considering
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Figure 5. (a) Time evolution of the expectation value of

the parity operator ⟨Ψ(t)|P̂|Ψ(t)⟩ over a single trajectory
|Ψ(t)⟩. Insets: excited-state projected Wigner function (nor-
malized) of the instantaneous state from a single trajectory,
as defined in the main text. The upper one is for a state
with parity ⟨P̂⟩ = 1, while the lower one is for a state

with parity ⟨P̂⟩ = −1. (b) Wigner function associated with
the trajectory-averaged steady-state density matrix (normal-
ized). Notice that the presence of finite ∆v ̸= 0 rotates
the bi-modal distribution in the phase space. Parameters:
∆0/(2π) = 0, ∆v/(2π) = 4GHz, g/(2π) = 20GHz, η = 0.3,
γv/(2π) = 10GHz, γ0/(2π) = 0.04GHz, vibrational numeri-
cal cutoff Nv−cutoff = 50.

the two opposite parity states

|Ψ±⟩ =
1√
2
[|cat±⟩|g⟩+ |cat∓⟩|e⟩] . (25)

Here |cat±⟩ = (|β⟩ ± | − β⟩)/
√

N± is a cat state made
of vibrational coherent states with amplitude β, and
N± = 2 ± 2 exp[−2|β|2], where the coherent state am-
plitude scales with the ratio between the Rabi coupling
and the vibrational decay β ∼ g/γv [58].
|Ψ±⟩ are a good approximation of the two lowest eigen-

states of the quantum Rabi model in the ultra-strong
coupling limit g ≫ ∆0,∆v [52] and they almost do not
evolve under the action of the Hamiltonian. On the other
side, they transform into each other under the effect of
dissipation: suppose, for instance, that the system is
in the state |Ψ+⟩. If a vibrational quanta is absorbed
by the environment, the state jumps to the new state

b̂|Ψ+⟩ ∼ |Ψ−⟩. We then expect that the steady-state
density matrix is, to good approximation, a statistical
mixture of these states. As a consequence, the quantum
jumps caused by the spontaneous emission of a vibra-
tional quantum make the system jump between states
of opposite parity, creating the telegraph signal in the
parity expectation in Fig. 5(a). Notice that the states
|Ψ±⟩ have the same vibrational and electronic popula-
tion, and as a consequence, no blinking is visible in the
fluorescence.

A simple verification of our reasoning is given by con-
sidering the density matrix of the instantaneous single
trajectory state projected on the excited electronic state
ρ̂proj(t) = σ̂†σ̂|Ψ(t)⟩⟨Ψ(t)|σ̂†σ̂. Looking at its Wigner
function, we recover the shape of opposite parity cat
states [57, 69], as shown in the insets of Fig. 5(a). In-
stead, when we average the state over many trajectories,
the steady-state projected Wigner function remains bi-
modal but loses all the quantum negativity as shown in
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Fig. 5(b).
While the telegraph signal in the parity is a smoking

gun evidence for the vibrational bi-modality, this oper-
ator is hardly measurable in a realistic setting since it
requires measuring the electronic and vibrational popu-
lation and all their combined correlations. Moreover, as
shown in Fig. 5(a), the jumps occur on the fast timescales
of the vibrational dissipation tjump ∼ 1/γv < 0.1 ns,
much faster than the typical detector resolution.

A different strategy is instead to explicitly break the
symmetry with a bias laser and then observe the blink-
ing in the photon counting signal. This occurs on slower
time scales, set by the interplay between the asymmetric
bias and the symmetric dissipative dynamics. Clearly,
the system is then driven to a different steady state, and
the jumps happen between slightly different states. How-
ever, if the bias is not too strong, some features of the
symmetric state will remain, thus providing a method to,
at least, prove its existence.

To this aim, we consider the second order in the po-
laron expansion due to Eq. (5) by adding a new laser
with frequency ωAS2 = (3ωAS − ωS)/2, which is resonant
with the two-vibrations transition, as illustrated in Fig.
2(e). In the same way as explained for the ZPL, Stokes,
and anti-Stokes Hamiltonians in Sec. II A, we add the
new Hamiltonian term to our toolbox

HAS2 =
ℏgAS2

2

(
σ̂b̂2 + h.c.

)
, (26)

where gAS2 = η2ΩAS2/2 is the anti-Stokes2 two-
vibrations coupling constant, proportional to the respec-
tive laser Rabi frequency ΩAS2 . Notice that the ∼ η2

suppression makes this term quite small but still relevant
for our purposes. Indeed, in complete analogy with the
two-photon Rabi model [70], this term is invariant under

the two transformations b̂ 7→ −b̂, σ̂ 7→ σ̂ and b̂ 7→ ib̂,
σ̂ 7→ −σ̂, but does not respect the original Z2 symmetry
of the Rabi model.

The total Hamiltonian of the system is now given by
HgRabi + HAS2 under the assumption that gAS2 < gS =
gAS = g, where the equality between the Stokes and
anti-Stokes drivings is not necessary, but simplifies the
discussion. In Fig. 6(a-b) we show the instantaneous

photon number ⟨Ψ(t)|N̂zpl|Ψ(t)⟩, ⟨Ψ(t)|N̂AS|Ψ(t)⟩ for a
single unraveled trajectory |Ψ(t)⟩. The presence of the
bias anti-Stokes2 driving term induces a blinking in the
photon counting by breaking the symmetry in the bi-
modal vibrational steady-state. The blinking occurs now
on a much longer timescale, that can be observed with the
current technology. This phenomenon is particularly vis-
ible in the anti-Stokes photon number, where the jumps
have a size comparable with the average signal.

Repeating the algorithm over many trajectories, we
can collect the blinking values in a histogram to visu-
alize the probability density of having a certain photon
number. In Fig. 6(c) we show what is obtained for the

ZPL photon number ⟨Ψ(t)|N̂zpl|Ψ(t)⟩. The very small
jumps partially visible in Fig. 6(a) give rise to only a
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Figure 6. (a) ZPL single trajectory photon number

⟨Ψ(t)|N̂zpl|Ψ(t)⟩ with the bias anti-Stokes2 driving term. (b)

Anti-Stokes single trajectory photon number ⟨Ψ(t)|N̂AS|Ψ(t)⟩
with the bias anti-Stokes2 driving term. (c) Histogram of

⟨Ψ(t)|N̂zpl|Ψ(t)⟩ (d) Histogram of ⟨Ψ(t)|N̂AS|Ψ(t)⟩. Both (a-
b) are made taking Ntraj = 1000 trajectories, with the same
fixed time t, taken after reaching the steady-state. Param-
eters: gAS2/(2π) = 1.5GHz; the system is initialized a low-
energy random state and evolved until reaching the steady
state. Other parameters: same as Fig. 5(c-d)
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Figure 7. (a) Time evolution of the expectation value

of ⟨Ψ(t)|N̂zpl|Ψ(t)⟩ over a single trajectory |Ψ(t)⟩. Insets:
excited-state projected Wigner function (normalized) of the
instantaneous state from a single trajectory, as defined in the
main text. The upper one is for a state with ⟨σ̂ + σ̂†⟩ = 1,
while the lower one is for a state with parity ⟨σ̂ + σ̂†⟩ = −1.
(b) Histogram of ⟨Ψ(t)|σ̂ + σ̂†|Ψ(t)⟩ taken over Ntraj = 1000
trajectories at the same fixed time t after reaching the steady-
state. Parameters: same as Fig. 5(c-d)

small broadening in the histogram probability density.
However, the ZPL photon number does not exhibit any
bimodality. On contrary, the histogram of the anti-Stokes
photon number ⟨Ψ(t)|N̂AS|Ψ(t)⟩, shown in Fig. 6(d), is
clearly bi-modal. As a consequence, the anti-Stokes fluo-
rescence appears to be a good witness of the bi-modality.

The fact that the vibrational bi-modality does not
show up in all the observables reminds Ref. [59] where
switching from photon counting to homodyne detection
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is crucial to observe the jumps. Following this reasoning,
we provide another striking example by looking at the ex-
pectation value of the ZPL electric field operator Êzpl ∼
σ̂+σ̂†, which is the main observable in the homodyne de-
tection. Constrained by the symmetry of the Rabi model,
at zero anti-Stokes2 bias, gAS2 = 0, this quantity is al-
ways exactly zero, ⟨Ψ(t)|σ̂ + σ̂†|Ψ(t)⟩|gAS2=0 = 0. In Fig.

7(a) we show the time evolution of ⟨Ψ(t)|σ̂ + σ̂†|Ψ(t)⟩
over a single trajectory, for gAS2/(2π) = 1.5GHz, which
exhibits a telegraph signal jumping between ±1 values.
As in the previous cases, in Fig. 7(b), we plot the prob-
ability density histogram by collecting multiple trajec-
tories, which shows sharp bi-modality over the extremal
values. In the insets of Fig. 7(a) we show the excited
electronic state projected Wigner function, associated to
the istantaneous single trajectory state ρ̂proj(t) for the
extremal values ⟨Ψ(t)|σ̂ + σ̂†|Ψ(t)⟩ = ±1. While the bias
still preserves a small amount of negativity, the cat-state
structure is mostly gone due to the breaking of the sym-
metry. On the contrary, when averaged over many tra-
jectories, one recovers a Wigner function almost identi-
cal to Fig. 5(b). As a disclaimer, we must say that a
full discussion and characterization of homodyne detec-
tion for these cryogenic molecular setups would be too
involved and far beyond the scope of the current paper.
Here we limit ourselves to acknowledging the possibility
of observing the vibrational bi-modality through various
quantities by explicitly breaking the symmetry of the sys-
tem.

V. THZ-TO-OPTICAL TRANSDUCER

We finally focus on the consequences of having a finite
THz driving ΩTHz ̸= 0 directly applied to the vibrational
dipole transition.

An interesting perspective discussed in Refs. [71, 72]
and realized experimentally in Refs. [14, 15, 17, 73] is to
exploit the interaction between vibrational and electronic
degrees of freedom in molecules to implement an IR-to-
optical transducer. This idea is particularly promising
when generalized to large fluorescent organic molecules
with similar features as the PAHs. Having a large quan-
tum yield and low levels of decoherence (both in the ZPL
and the vibrational side bands), they operate fully in the
quantum regime. Their low-frequency vibrational modes
are typically in the few-THz range, coupled with sizable
Franck-Condon factors, η2 ∼ 0.01− 0.1, to the electronic
transition at 350−750THz [33]. The importance of such
a transduction device is immediately understood by con-
sidering it as the core of a single THz-photon detector
[74, 75].

The framework of hybrid quantum states engineering,
discussed in the previous sections, is also very helpful to
develop the basics of the general quantum theory of such
a device. All the relevant frequency scales emerge clearly,
allowing the establishment of the general conditions and
figure of merits to achieve the optimal operational regime

[76].
We consider the Stokes JC Hamiltonian discussed in

Eq. (21) provided with a THz input, directly driving the
vibrational mode

Htrans =ℏ∆0σ̂
†σ̂ + ℏ∆vb̂

†b̂+
ℏgS
2

(
σ̂b̂† + h.c.

)
+

ℏΩTHz

2

(
b̂+ h.c.

)
.

(27)

where ∆0 = ω0 − (ωS − ωTHz), ∆v = ωv − ωTHz.
Under the Stokes driving only, the fluorescence is com-

pletely due to the vibrational population, implying that
the rate of photon transduction from THz to optical fre-
quency is here given by the total emission rate

Γtrans = γ0⟨σ̂†σ̂⟩. (28)

In this work, we mainly focus on the linear regime, where

1. the transducer is linear in the input THz intensity,
ITHz, so its transduction rate scales as Γtrans ∼
Ω2

THz;

2. the optical response to a THz photon is maximized.

Following the semi-classical steady-state equations in
App. F, we can derive an expression that follows the
requirement of linearity, reading

Γtrans ≈ χtrans
Ω2

THz

γ0
, (29)

where the linearized resonant transducer susceptibility is

χtrans = 2nS
C2
S

(1 + CS)2
. (30)

Here, the THz driving is assumed to be resonant with the
vibrational mode ∆v = 0. Moreover, in complete analogy
with the field of cavity QED [77], we have introduced the
Stokes cooperativity and saturation number

CS =
g2S
γvγ0

, nS =
4∆2

0 + γ2
0

2g2S
. (31)

These quantities are the relevant combinations of param-
eters characterizing the interplay between electronic and
vibrational transitions.
At first sight, it is clear from Eq. (30) that, for the

transducer to function efficiently, the Stokes cooperativ-
ity should be maximized, just like in the strong coupling
regime of cavity QED [77]. Instead, opposite to the
strong coupling regime, the saturation number should
also be maximized. This leads to a competition since
they both depend on the Stokes coupling gS with inverse
proportionality between each other. We then deduce that
the working regime for a good transducer is different from
the strong coupling regime of cavity QED, and it can be
understood as follows: The molecule has to convert ef-
ficiently the vibrational excitation to an electronic one,
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Figure 8. (a) Level scheme representation of the combined
Stokes and THz drive. (b)The transducer susceptibility as
a function of the normalized Stokes coupling gS/γ0 and the
normalized vibrational dissipation rate γv/γ0. The black lines
are isolines at fixed cooperativity value log10[CS] = const. The
red lines are the isolines of χtrans in logscale. Solid lines are for
positive values and dashed for negative ones. The star marks
the typical value for a PAH-like molecule. Other parameters:
∆0 = ∆v = 0.

quicker than the vibrational dissipation and thus requir-
ing strong Stokes coupling. However, once the conversion
is done, it needs to quickly flush away the excitation as
an optical photon before it can be reconverted into a
vibration, requiring a Stokes coupling weaker than the
radiative (electronic) decay rate.

These conditions altogether lead to a non-trivial scal-
ing of the transduction susceptibility, which is visualized
in Fig. 8. Here we plot Eq. (30) as a function of the
Stokes coupling gS and the vibrational linewidth γv nor-
malized on the electronic decay rate γ0 which is kept
fixed. The isolines of constant cooperativity are plotted
as black lines (in log-scale). Since the cooperativity and
the saturation number are not independent, there exists
a best trade-off, which appears at CS = 1. This condition
is thus interpreted as an optimal impedance matching
condition in the vibrational-electronic excitation trans-
duction.

The optimal case for a candidate molecule with prop-
erties similar to those of DBT is marked in Fig. 8 by
a star, in the region where χtrans ∼ 10−3 − 10−2. As-
suming a THz-drive Rabi frequency of ΩTHz/(2π) =
100MHz, γ0/(2π) = 40MHz and the pessimistic value of
χtrans = 10−3 we obtain an emission rate of Γtrans/(2π) ≈
250 kHz. With a detector click probability pclick = 0.05,
we would observe a fluorescence of ∼ 12.5 kcps (kilo-
count per second), very similar to what was recently ob-
served for IR-optical transduction at room temperature
in Ref. [17]. We remark that our analysis is very gen-
eral and can be thus adapted to all kinds of IR-optical
transduction phenomena with molecules.

Overall, this analysis states that a good fluorescent
molecular transducer requires a large quantum yield (i.e.,
large optical dipole transition) and narrow vibrational
transitions. The amplitude of the Stokes driving is in-
stead fixed by maximizing Eq. (30) (or looking at Fig. 8),
which typically corresponds to work in a high-saturation

regime.

VI. TRANSDUCER’S INPUT
IMPLEMENTATIONS

While in the previous section, we provided the general
description for the transducer output, here we develop a
basic design for its input. This stands to quantify the
amount of THz radiation that can reach the molecule
and what is the amount that is absorbed. In this way,
we can provide a concrete estimation of ΩTHz that can
be obtained in real experiments.
Since the Rabi frequency is just given by the energy of

a dipole in a electric field ℏΩTHz = eξvETHz, the prob-
lem is split in two: estimate the vibrational transition
dipole ξv and the THz RMS electric field ETHz hitting

the molecule. Here ξv = ⟨0v|ξ̂v|1v⟩ is the matrix element

of the dipole operator ξ̂v associated to the vibrational

mode, |0v⟩ is the vibrational vacuum and |1v⟩ = b̂†|0v⟩ is
the first vibrational excitation.

A. Vibrational transition dipole and selection rule

Evaluating ξv for a specific vibrational mode from first
principles is not an easy task, relying on complicated
DFT simulations [78], and is far beyond the aim of our
current work. However, we can still have an order of mag-
nitude estimation based on the available measurements.
Following Ref. [79, 80], we consider the fundamental re-
lation between resonant absorption cross section and ra-
diative decay rate as

Pabs

I
= σv

abs =
3λ2

v

8π

γvγ
v
rad

(γv + γv
rad)

2
, (32)

where Pabs is the absorbed power, I is the incident ra-
diation intensity, λv = 2πc/ωv is the vibrational wave
length, and the radiative rate is linked to the transition
dipole strength through [79, 81]

γv
rad =

4

3
αfs

ω3
v

c2
ξ2v. (33)

Here, c is the speed of light, and αfs = e2/(4πϵ0ℏc) ≈
1/137 is the fine-structure constant.
Having that the vibrational non radiative decay is

much bigger than the radiative one γv ≫ γv
rad, we can

derive the vibrational transition dipole as a function of
the absorption cross section as in Ref. [72]

ξv ≈
√

σv
abs

4παfsQv
. (34)

Here we introduced the vibrational quality factor as
Qv = ωv/γv. For instance, considering the IR-optical
transduction experiment in Ref. [17], it was estimated
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σv
abs ∼ 10−5 nm2. Assuming a vibrational quality fac-

tor Qv ∼ 102, we obtain ξv ∼ 10−3 nm. In other IR-
active molecules, like in Ref. [82], it can arrive up to
ξv ∼ 10−2 nm. Based on evidence of similar strong
absorbance, we expect the estimations for IR active
molecules to hold also for molecules with modes active
down to the THz range, like PAH molecules [83, 84].
From here on, we take this range as a reference.

While PAH molecules like DBT seem to have op-
timal parameters to implement the THz-optical trans-
ducer, they face a fundamental limitation imposed by
their high level of symmetry. For every centrosymmet-
ric molecule, the ”IR-Raman” selection rule imposes that
η ̸= 0 =⇒ ξv = 0 (and vice versa) [32], making it not
possible to have non-zero Stokes coupling together with
non-zero THz Rabi frequency. This bound can be in prin-
ciple circumvented by engineering specific non-symmetric
molecules that preserve the condition of narrow vibra-
tional resonances and high quantum yield [85].

On the other side, there is evidence that centrosym-
metric molecules spontaneously break the ”IR-Raman”
selection rule when embedded in a solid-state matrix
[86, 87]. Regarding the DBT molecule, a hint comes
from the observation that in such conditions they can
have a permanent dipole moment, as confirmed by mea-
suring the linear component of the Stark shift [88, 89],
signaling a clear break of centrosymmetry (the amount of
permanent dipole moment can be engineered by specif-
ically designing the matrix to maximize the asymmetry
[6, 90]). At the same time, other studies have shown
that in the matrix the molecule can also exhibit Raman-
active modes that are not present in its free space con-
figuration [30]. This suggests that the matrix-induced
symmetry-breaking may also activate vibrational modes
that are typically forbidden. Even with a strongly re-
duced Franck-Condon overlap, these ”IR-Raman” active
vibrational modes could be used to realize our current
proposal. In this perspective, probing the transduction
with a broadband quantum cascade laser (QCL) [91] also
represents a viable way to do THz spectroscopy on the
molecule, being able to discern the symmetry or asym-
metry of each different vibrational modes.

B. THz electric field amplitude

As a final step of this experimental characterization, we
consider the problem related to the THz electric field in-
tensity ETHz. Considering the relation between radiation
intensity and the electric field in Eq. (D1), we estimate
that for I ∼ 0.1kW/cm2 of THz radiation, we have an
average RMS electric field ETHz ∼ 103 V/m. Assuming
a vibrational dipole strength ξv ∼ 10−3 nm, we have

ΩTHz

2π
= ξv

eETHz

2πℏ
∼ 20 kHz. (35)

From the previous analysis, it is clear that, to have
a decent signal, we require ΩTHz ≳ γ0. Using γ0 of
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THz 
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Figure 9. Cartoon representation of possible transduction
setups. (a) Molecules trapped in matrix nano-crystals are
directly placed in contact on the patch antenna of a quan-
tum cascade laser. The molecules are directly coupled to
the intense electric near-field. (b) Molecules trapped in ma-
trix nano-crystals placed in the gap of a THz resonant meta-
material (in this sketch a split-ring resonator). The external
THz radiation is absorbed by the resonant meta-material, and
the oscillating THz field is compressed in the sub-wavelength
gap, enhancing the electric field strength of a few orders of
magnitude.

DBT molecule as a reference, it means that we need
ΩTHz/(2π) ∼ 10 − 100MHz. The value obtained in Eq.
(37) for the THz free space radiation is too small. Assum-
ing χtrans ∼ 10−3, and with a detector click probability
pclick ∼ 0.05, as in the previous section, this would corre-
spond to a completely negligible transduced-fluorescence
rate pclickΓtrans/(2π) = χtransΩ

2
THz/(2πγ0) ∼ 10−7 kcps.

We need then to consider new setups where the RMS
THz electric field can be boosted by at least a few orders
of magnitude.
The first example is schematically represented in Fig.

9(a). Here, the molecules (enclosed in a nano-crystal ma-
trix [88]) are placed directly on the patch-antenna of a
THz radiation source [91]. In this way, the molecules are
coupled directly with the sub-wavelenght near-field of the
structure rather than its radiative part. The RMS elec-
tric field here can reach values around Enear ∼ 106 V/m
[91, 92], and assuming ξv ∼ 10−3 nm we have a Rabi
frequency

Ωpatch
THz

2π
= ξv

eEnear

2πℏ
∼ 0.2GHz. (36)

The transduced fluoresce signal here is quite large
and can easily reach values as pclickΓtrans/(2π) =

pclickχtrans(Ω
patch
THz )2/(2πγ0) ∼ 50 kcps. While these val-

ues are fully within the optimal range for an eventual
molecular THz-optical transducer, this setup faces the re-
striction that the molecule must be coupled to the near-
field, and it is thus unsuited to be used for radiation
detection.
This limitation can be overcome by the setup described

in Fig. 9(b). The THz radiative field is collected by an
antenna, which compresses it into a sub-wavelength re-
gion, where it can finally couple with the molecule. This
configuration could be naturally implemented using a
resonant meta-material, such as a split-ring resonator,
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where the oscillating electric field is confined in a gap
of size d ∼ 1 − 10µm [93–95]. As described in full de-
tail in App. G, the THz Rabi frequency is then boosted
by a capacitive gain factor that can reach values up to
GC ≈ 100. Considering the value of the radiative Rabi
frequency estimated in Eq. (37), we then obtain

Ωmeta
THz

2π
= GC

ΩTHz

2π
∼ 2MHz. (37)

This value is still much smaller than coupling the
molecule directly with the near-field, as in Eq. (36), and
indeed, it produces a signal around pclickΓtrans/(2π) ∼
0.005 kcps within the same assumption for the other es-
timates given above. However, we stress that in the ab-
sence of THz radiation, no light is emitted at the detected
optical frequencies, allowing the background noise from
the molecule itself to be, in principle, much smaller than
this counting rate. Leveraging over the collective en-
hancement, for which one can expectNmol ∼ 10−20 reso-
nant per nanocrystal-matrix [88], and with the proper im-
provement of the experimental technology, for instance,
with a sensible increase of pclick, this signal can be de-
tected.

VII. CONCLUSIONS

In this work, we present a basic theory that shows how
to coherently interface vibrational and electronic degrees
of freedom in fluorescent organic molecules.

Focusing on a single vibrational mode and combining
laser sources resonant with the ZPL, Stokes, and anti-
Stokes frequencies, the molecule’s dynamics can be ma-
nipulated to recover various paradigmatic cavity QED
models, such as the Jaynes-Cummings and the quantum
Rabi model. Here, the vibrational mode plays the role
of the Bosonic cavity mode. The competition between
the engineered Hamiltonian dynamics and the strong vi-
brational dissipation can lead to non-trivial steady-states
exhibiting vibrational bi-modality, having the feature of
a statistical mixture of cat states.

This behavior can be further appreciated by unravel-
ing the system’s density matrix into its quantum trajec-
tories, directly observing its composition in vibrational
cat states. Using another supplemental laser, tuned to
what we called anti-Stokes2 frequency, we proposed to
activate a new hybrid process involving two vibrational
quanta that break the symmetry of the quantum Rabi
Hamiltonian. As a consequence, vibronic quantum jumps
can be triggered in the bi-modal state, which are visible
as blinking in the anti-Stokes photon counting or in an
eventual homodyne detection of the ZPL fluorescence.

By combining the hybrid quantum-state engineering
framework with a direct THz driving, one can exploit
the Stokes coupling to implement a THz-to-optical trans-
ducer. Again, the theory is developed in full analogy with
cavity QED, characterizing the transducer functionality

by introducing the vibrational cooperativity and satura-
tion number. After expressing its efficiency through a lin-
ear response function, we assess that molecules with high
quantum yield and narrow vibrational transitions turn
out to be optimal candidates as THZ-to-optical trans-
ducers.

Fluorescent PAH molecules would be good options, al-
though facing the fundamental problem of being mostly
centro-symmetric. This symmetry forbids the molecule
to have THz absorption simultaneous to the Stokes Ra-
man transition, effectively forbidding the transduction.
However, as for spin-active molecules [1, 85, 96], there
might be an interest for the community to engineer and
build PAH-like molecules with the desired asymmetry
with the goal of improving the THz sensitivity. Another
possibility is to explore, and eventually exploit, the asym-
metry induced by the molecule’s insertion into the solid-
state matrix.

Because of the extremely long wavelength of THz ra-
diation, the expected possible molecule’s cross-section is
extremely small. To circumvent this limitation one can
place the molecule directly on the surface of the THz
source and then couple it with the intense near-field of
the output antenna. Another strategy may instead in-
volve the use of a metamaterial resonant structure acting
as a buffer. A THz resonator (like a split-ring cavity) can
match the impedance between free space THz radiation
and the extremely sub-wavelength molecular vibrational
dipole transition sensibly boosting its absorption.

Overall, our analysis shows that the combination
of electronic and vibrational transitions in fluorescent
molecules is an extremely valuable tool for quantum sci-
ence and technology [33]. It can be used to explore non-
classical states of mechanical degrees of freedom in strict
analogy with the field of optomechanics [97, 98], but it
may also be an important piece for THz technology at
the single quantum level [74].
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Appendix A: Frequency filtered photodetection

Equivalently to the theory described in Ref. [99],
we can describe the frequency-resolved photodetection
within the master equation approach by including a bath
with structured density of states F(ω), peaked at the fre-
quencies of interest, and normalized such that F(ω) ≤ 1.
We refer to F(ω) also as the detector’s filter spectral den-
sity. In this description, the detector is the bath itself.

To include the frequency resolution, we take the ap-
proach described in Ref. [100, 101]. Assuming that the
system is coupled to the detector through the system’s
generic operator Ŝ. As explained in Ref. [101], we need
to split this operator into its positive and negative fre-
quency components by introducing

Ŝnm =
∑

u,v∈D(ωmn)

|u⟩⟨u|Ŝ|v⟩⟨v|. (A1)

This is the spectrally filtered jump operator between the
system’s energy eigenstates, where |n⟩, |m⟩ is the n,m-th
eigenstate with ωn, ωm its corresponding eigenfrequency
of the total system’s Hamiltonian, and ωmn = ωm − ωn

are the system’s Bohr frequencies. Notice that here we
have summed over the set D(ωmn) of possible degenerate
transition-states |u⟩, |v⟩ such that |ωvu − ωmn| < κD, as
customary to treat degenerate transitions in the master
equation derivation [102]. Since

∑
n<m(Ŝnm+Ŝ†

nm) = Ŝ,
this is just a way to split each jump operator in its posi-
tive frequency components [103]. As pointed out in Ref.
[100], to derive Eq. (A6), one assumes an independent,
individual bath for each transition n,m. Each of these
baths has flat density of states and a bandwidth given
by κD, essentially being a detector only for the n,m-
transition, thus constituting a frequency resolution pixel
of the whole detector. In this perspective, the bandwidth
of the detector is set by the region in ω where F(ω) ≈ 1,
while the minimum detector resolution is set by κD.
Since every n,m-transition is independent by all the

non-degenerate others, one can use the input/output re-
lations [67] to express all the observables seen by the
detector as products and sum of the spectrally filtered
jump operators weighted by the bath density of states√
F(ωmn)Ŝnm. For instance, the total energy absorbed

by the detector is

W =
ℏκD

4

∑
σ⃗

F(ωσ⃗)⟨Ŝ†
σ⃗Ŝσ⃗⟩, (A2)

from which we define the photon number operator

N̂F =
∑
σ⃗

F(ωσ⃗)⟨Ŝ†
σ⃗Ŝσ⃗⟩. (A3)

The frequency-filtered emission spectrum (resonance
fluorescence) is given by

Sfilter(ω) =
∑
σ⃗

F(ωσ⃗)

∫
dteiωt⟨Ŝ†

σ⃗(t)Ŝσ⃗⟩, (A4)

and the photon coincidences

g
(2)
filter(τ) =

∑
σ⃗,λ⃗

F(ωσ⃗)F(ωλ⃗)
⟨Ŝ†

σ⃗

[
Ŝ†
λ⃗
Ŝλ⃗

]
(τ)Ŝσ⃗⟩

⟨Ŝ†
σ⃗Ŝσ⃗⟩⟨Ŝ†

λ⃗
Ŝλ⃗(τ)⟩

. (A5)

Here σ⃗ = (n,m), λ⃗ = (p, q) with n < m and p < q, are
vectorial indices to shorten the notation.
The back-action on the system due to the detection

events is then given by the detector Lindbladian dissipa-
tor

Ldet(ρ̂) =
ℏκD

2

∑
n<m

F(ωmn)
[
2Ŝnm ρ̂ Ŝ†

nm − {Ŝ†
nmŜnm, ρ̂}

]
,

(A6)
It is worth noticing that if κD ≪ γ0 ≪ γv, the dissipative
back-action of the detector on the system is completely
negligible. In this respect, we can thus neglect the con-
tribution of Eq. (A6) to the whole molecule’s master
equation and just access the detected quantities by the
above-mentioned expectation values.
The frequency component decomposition of the jump

operators is a treatment typically used in the field of
ultra-strong coupling and non-perturbative cavity QED;
see, for instance, Ref. [52, 100]. Most often, splitting
the jump operators in this way cannot be represented
analytically, and it requires to numerically diagonalize
the Hamiltonian and numerically reconstruct the posi-
tive frequency components of the jump operator. For-
tunately, thanks to the polaron transformation, here we
can represent everything analytically. After the polaron
transformation in Eq. (4), and taking Ŝ = σ̂pol as the
jump operator coupled to the detector (and the electro-
magnetic environment as well), it is straightforward to
split it when represented on the eigenbasis of the polaron
Hamiltonian in Eq. (6). Using the Taylor series of the
displacement operators in Eq. (5) and assuming ωv ≪ ω0

together with η < 1, the polaron jump operator Ŝ = σ̂pol

is immediately expressed as a sum of positive frequency
terms

σ̂pol(t) = e−
η2

2

∑
n,m

(ηb̂†)n

n!

(−ηb̂)m

m!
σ̂e−i(ω0−(n−m)ωv)t

=
∑
n,m

Ŝnm(t).

(A7)

Here, the polaron lowering operator is taken in interac-
tion picture with respect to the polaron system’s Hamil-
tonian in Eq. (6) highlighting the split in different fre-
quency components. We clearly see that ω0+(n−m)ωv >
0 for each n,m ∈ N provided that m− n < ω0/ωv ∼ 70.
The last estimate is based on the values of ω0 and ωv

for a typical DBT molecule [30] and is somehow simi-
lar for many fluorescent molecules. Having η ≪ 1 makes
the contributions at negative frequencies completely neg-
ligible, so we can take (A7) as the decomposition of the



14

polaron lowering operator in its positive frequency com-
ponents.

In case of strong driving, for instance, including in
the Hamiltonian the driving terms in Eqs. (9)-(10)-(11),
when the driving Rabi frequencies are larger than the de-
tector bandwidth Ω > κD, one needs to re-diagonalize the
Hamiltonian including these driving terms. The jump op-
erator must be re-written on this new eigenbasis, includ-
ing the driving dressing. However, this leads to observ-
able consequences only if one can resolve the difference
of the new positive frequency terms, requiring a detector
with resolution at the scale of the driving Rabi frequen-
cies Ω [104]. For our specific purpose, we do not account
for this possibility, which is instead left for a future work.

Taking only the linear order in η, we reduce to the
case discussed in the main text. For a flat filter func-
tion F(ω) = 1 (no filtering) and assuming the simple
case where optical and vibrational excitations are uncor-
related and factorized, the emission spectrum becomes

S(ω) ≈ Szpl(ω) + η2
∫

dω′SS(ω − ω′)Szpl(ω
′)

+ η2
∫

dω′SAS(ω − ω′)Szpl(ω
′),

(A8)

where

Szpl(ω) =

∫
dteiωt⟨σ̂†(t)σ̂⟩, (A9)

SS(ω) =

∫
dteiωt⟨b̂(t)b̂†⟩, (A10)

SAS(ω) =

∫
dteiωt⟨b̂†(t)b̂⟩. (A11)

In the simplest case of uncoupled vibrational and elec-

tronic degrees of freedom, we have b̂(t) = b̂e−iωvt. We
thus have that SS(ω) = δ(ω+ωv)+SAS(−ω). Assuming
a steady-state Lorentzian profile for both ZPL and anti-
Stokes, Szpl(ω) = L(ω−ω0, γ0), SAS(ω) = L(ω−ωv, γv),
we have

S(ω) ≈L(ω − ω0, γ0) + η2nvL(ω − (ω0 + ωv), γv + γ0)

+ η2(1 + nv)L(ω − (ω0 − ωv), γv + γ0).

(A12)

Here L(ω − ωc, γ) is a Lorentzian profile centered in ωc

and with full-width-half-maximum (FWHM) γ, and nv =

⟨b̂†b̂⟩ is the vibrational steady-state occupation.

Appendix B: Master equation

As described in Ref. [36], the driven-dissipative system
is well described by the master equation

ℏ∂tρ̂ = LH(ρ̂)+Lγ0
(ρ̂)+Lγv

(ρ̂)+Lϕ0
(ρ̂)+Lϕv

(ρ̂). (B1)

In the right-hand-side, each term represents respectively:
the Hamiltonian dynamics, the electronic spontaneous
decay, the vibrational spontaneous decay, the electronic
dephasing, and the vibrational dephasing.
After the polaron transformation, the coherent dynam-

ics (including the drivings) is given by all the Hamilto-
nian terms

LH(ρ̂) = −i [Hmol +Hopt +HTHz, ρ̂] . (B2)

When the Franck-Condon factor is zero η = 0, the elec-
tronic and vibrational dissipation are simply given by

Lγ0
(ρ̂) =

ℏγ0
2

[
2σ̂ ρ̂ σ̂† − {σ̂†σ̂, ρ̂}

]
, (B3)

Lγv
(ρ̂) =

ℏγv
2

[
2b̂ ρ̂ b̂† − {b̂†b̂, ρ̂}

]
. (B4)

However, for non-zero Franck-Condon factor, η ̸= 0, the
electronic and vibrational degrees of freedom are coupled,
and these two terms need to be re-derived. With the
help of the polaron transformation, and by introducing
the electronic bath density of states J0(ω), this can be
immediately done by the substitution

σ̂ 7−→ e−
η2

2

∑
n,m

√
Jnm
0

(ηb̂†)n

n!

(−ηb̂)m

m!
σ̂, (B5)

where, for brevity, we define Jnm
0 = J0(ω0 − (n−m)ωv).

The same is repeated for the vibration

b̂ 7−→
√
Jv(ωv)b̂+ η

√
Jv(0)σ̂

†σ̂, (B6)

where Jv(ω) is the vibrational bath density of states.
Since at low frequency the bath density of states is al-
ways assumed to go to zero Jv(ω = 0) = 0, we can safely
neglect the last term of the equation above. The polaron
transformed electronic and vibrational decay Lindbladian
are then given by

Lγ0
(ρ̂) =

ℏγ0
2

e−η2

×
∑
n,m

Jnm
0

η2n(−η)2m

(n!m!)2
[
2p̂nm ρ̂ p̂†nm − {p̂†nmp̂nm, ρ̂}

]
≈ J0(ω0)

ℏγ0
2

[
2σ̂ ρ̂ σ̂† − {σ̂†σ̂, ρ̂}

]
+O(η2)

(B7)

Lγv
(ρ̂) ≈ Jv(ωv)

ℏγv
2

[
2b̂ ρ̂ b̂† − {b̂†b̂, ρ̂}

]
. (B8)

Here p̂nm =
(
b̂†
)n

b̂mσ̂ is a single-frequency polaron com-

ponent. The last approximation in the electronic Lind-
bladian is well justified when γ0 is the smallest frequency
rate in the system. For a typical Franck-Condon fac-
tor η2 ≪ 1, the mixed vibrational/electronic decays due
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to the higher terms in the polaron expansion are then
completely negligible. Having the two densities of states
normalized such that J0(ω0) = Jv(ωv) = 1, one recovers
the result in the main text.

Focusing our interest on molecules trapped in solid-
state matrices, it would be also important to consider
the photon and vibration dephasing terms, given by

Lϕopt
(ρ̂) =

ℏγϕ,opt
2

[
2σ̂†σ̂ ρ̂ σ̂†σ̂ − {σ̂†σ̂, ρ̂}

]
, (B9)

Lϕv(ρ̂) =
ℏγϕ,v
2

[
2b̂†b̂ ρ̂ b̂†b̂− {b̂†b̂, ρ̂}

]
. (B10)

Here γϕ,opt = γϕ,opt(T ), γϕ,v = γϕ,v(T ) are the tempera-
ture dependent optical and vibrational dephasing rates.
When the system operates at cryogenic temperatures,
around T ∼ 1K, these dephasing rates are exponentially
suppressed [36], so unless specified, we always neglect the
effect of dephasing.

Appendix C: Saturation curves

The emitted fluorescence depends on the scheme
adopted to excite the molecule and the scheme to de-
tect the emitted radiation. Two among the most pop-
ular schemes in the field are resonant excitation of the
HOMO-LUMO transition and detection of the Stokes
shifted emission, off-resonant excitation via an anti-
Stokes Raman process and detection through the zero-
phonon line (after the relaxation of the Raman-excited
vibrational quantum).

The first scheme results in a fluorescence rate

Γres = pclickγ0⟨N̂S⟩ = pclickγ0η
2⟨σ̂†σ̂⟩res, (C1)

where pclick ∈ [0; 1] is proportional to the detector cou-
pling rate κD, accounting for the probability that the de-
tector is activated by the photon. The excited population
is derived by solving the related optical-Bloch equations
related to the ZPL driving Hamiltonian in Eq. (9) in-
side the general master equation in Eq. (16) [23, 103].
Solving for the steady-state, one obtains

⟨σ̂†σ̂⟩res =
1

2

1

1 + nzpl
. (C2)

Here nzpl = (4∆2
0 + γ2

0)/(2Ω
2
zpl) is the ZPL saturation

number.
For the incoherent driving scheme, instead, we have

Γincoh = pclickγ0⟨N̂zpl⟩ = pclickγ0⟨σ̂†σ̂⟩incoh, (C3)

missing the Franck-Condon suppression factor ∼ η2 with
respect to the resonant scheme because we are directly
detecting the ZPL emission. As discussed in the main
text, we can compute the excited population by tracing

away the vibrational mode from the anti-Stokes Hamil-
tonian [67], obtaining a new Lindbladian contribution

Lpump(ρ̂) =
Γ+

2

(
2σ̂†ρ̂σ̂ − {σ̂σ̂†, ρ̂}

)
. (C4)

Deriving its related optical Bloch equations by including
it in the total master equation (this time without ZPL
driving term), we obtain

⟨σ̂†σ̂⟩incoh =
Γ+

Γ+ + γ0
. (C5)

Here, the pumping rate is given by

Γ+ =
g2AS

γv

γ2
v

4∆2
0 + γ2

v

. (C6)

Since gAS = ηΩAS, η2 ∼ 10−1 and γ0/γv ∼ 10−3, ac-
cordingly to App. D, we see that the power required to
saturate with the incoherent driving is ∼ 104 times the
saturation power in the resonant excitation scheme.

Appendix D: Power intensity, Rabi frequencies and
dimensional parameters

The electric field of a laser beam can be related to its
radiation intensity via the formula [81, 105]

I =
cϵ0
2

E2, (D1)

where E is intended as the RMS value of the main po-
larization.
The Rabi frequency resulting by irradiating a molecule

with dipole transition d = eξ (e is the elementary charge)
is then

Ω = ξ

√
8παfsI

ℏ
, (D2)

where αfs = e2/(4πϵ0ℏc) = 1/137 is the fine-structure
constant.
Taking inspiration from recent experiments with DBT

molecules in Anthracene [3], for the optical drive, we take
as a reference intensity

Is = 30W/cm2, (D3)

which is the resonant saturation intensity for the DBT
HOMO-LUMO transition at the resonant frequency of
ω0/(2π) ≈ 381.9THz (λ0 = 785nm). The Rabi frequency

can be then rewritten as Ω = Ωs
√
I/Is. Considering

that its transition dipole moment is d0 ≈ 11D we have
that ξ0 ≈ 0.23nm and we thus obtain

Ωs
0

2π
≈ 0.028GHz. (D4)

Notice that it is useful to keep in mind the unit-converted
intensity Is/ℏ = 3THz2/µm2. Its conversion to the
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estimated output power by considering the beam fo-
cused at the diffraction limit is Pout ∼ πλ2I, obtaining
P s
0 ∼ πλ2

0Is ≈ 1nW. In these type of experiments, the
output power of a laser can arrive to tens of mW, so
the radiation intensity can arrive up to I < 107 × Is =
300MW/cm2, and the relative optical Rabi frequency
Ω0/(2π) < 88GHz.

The same formulas hold for the THz Rabi frequency,
with the only replacement of the transition dipole mo-
ment, which has to be derived from the specific vibra-
tional transition. The vibrational dipole for fluorescent
organic molecules can be estimated to be in the range
ξv ∼ [10−3; 10−1] × ξ0, giving a much smaller Rabi fre-
quency. Moreover, we must consider that THz radia-
tion is on a much lower intensity scale due to its large
wavelength [92]. Considering a high output power of
PTHz ∼ 1mW and λTHz ∼ 60µm (ωTHz/(2π) = 5THz)
we have ITHz ∼ 10W/cm2 = Is/3 and a Rabi frequency
in the range ΩTHz/(2π) ∼ 0.1 − 10MHz. This value is
too small if compared to the typical dissipation of the
vibrational modes γv/(2π) ∼ 10GHz [30, 36].

Appendix E: Generalization to N-molecules and
M-modes of vibration

The model developed in the previous subsections de-
scribes only a single molecule with a single vibrational
mode. To generalise it to N-many identical molecules and
M-many modes, we introduce the index n = 1, 2, . . . N to
label each molecule and, for each molecule, a set of indices
kn = 1, 2, . . .M to label each local vibrational mode. In
this way, we have

σ̂ 7→ σ̂n b̂ 7→ b̂n,kn . (E1)

The polaron transformed operators are immediately gen-
eralised in the same way, provided that a specific Franck-
Condon factor and vibrational frequency for each mode
are introduced

η, ωv 7−→ ηkn
, ωv,kn

(E2)

The total Liouvillian defined in Eq. (16) can be just
substituted with

Ltot(ρ̂) 7−→
∑
n,kn

Ln,kn

tot (ρ̂), (E3)

In this generalization, we completely neglect the in-
teraction between molecules, assuming them as indepen-
dent objects. It is still worth noticing that for a dense
ensemble, the polaron dressing also affects the molecule-
molecule interaction with contributions at most ∼ η2kn

,
which can be small but non-negligible. This contribution
leads to a vibrational interaction between the molecules

Even though all the molecules are identical, they are
sensibly distorted by the embedding in the matrix, giving
rise to non-negligible inhomogeneous broadening [88]. As

a consequence, we have also indexed all the parameters,
which are, in principle, all different for each molecule
and each mode. On the other side, for most of the cases
discussed here, we can safely consider the molecules all
identical with identical parameters.
All the observables, such as the frequency-filtered pho-

ton number in App. A are generalized in the same way
N̂ 7→ N̂n,kn

.
For instance, the multi-mode emission spectrum of a

single molecule represented in Fig. 1 is given by by

S(ω) =L(ω − ω0, γ0) +
∑
k

η2knkL(ω − (ω0 + ωk), γk + γ0)

+
∑
k

η2k(1 + nk)L(ω − (ω0 − ωk), γk + γ0).

(E4)

Appendix F: Mean-field cavity QED equations

Here, we derive the semi-classical steady state of the
following Hamiltonian

H ≈ℏ∆0σ̂
†σ̂ + ℏ∆vb̂

†b̂+
ℏgS
2

(
σ̂b̂† + h.c.

)
+

ℏΩzpl

2
(σ̂ + h.c.) +

ℏΩTHz

2

(
b̂eiθ + h.c.

)
,

(F1)

where ∆0 = ω0 − (ωS + ωTHz), ∆v = ωv − ωTHz and we
assume ωzpl ≈ ωS + ωTHz.
From the full master equation in Sec. II C, discarding

the dephasing terms, we derive the semiclassical mean-
field equations

i∂tb =
(
∆v − i

γv
2

)
b+

gS
2
σ +

ΩTHz

2

i∂tσ =
(
∆0 − i

γ0
2

)
σ − gSsz (b+ bzpl)

∂tsz = i
gS
2

[σ(b+ bzpl)
∗ − h.c.]− γ0

2
− γ0sz.

(F2)

Here b = ⟨b̂⟩, σ = ⟨σ̂⟩, sz = ⟨σ̂†σ̂⟩−1/2, and, without loss
of generality, we set θ = 0. Moreover, we re-expressed the
ZPL driving term as an effective vibrational shift

bzpl =
Ωzpl

gS
. (F3)

Using the definitions in Eqs. (31), the steady state of
these equations is given by the following algebraic equa-
tions[

1 + 2i
∆v

γv
+

CS
1 + 2i∆0/γ0

1

1 + |bss|2/nS

]
bss = bin,

(F4)

⟨σ̂†σ̂⟩ss =
1

2

|bss|2/nS

1 + |bss|2/nS
. (F5)
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Here bss = ⟨b̂⟩+ bzpl, ⟨σ̂†σ̂⟩ss are the steady-state expec-
tation values, and

bin = −i
ΩTHz

γv
+

[
1 + 2i

∆v

γv

]
bzpl (F6)

is the total input driving amplitude accounting for both
the THz drive and the ZPL drive. These expressions
generalize the saturation formulas described in App. C.

At full resonance ∆0 = ∆v = 0, and assuming small
vibrational amplitude bss ≪ nS, we expand Eq. (F4),
obtaining

⟨b̂⟩ ≈ CS
1 + CS

bzpl −
i

1 + CS
ΩTHz

γv
. (F7)

Considering ΩTHz = 0, we obtain the vibrational pop-
ulation under weak ZPL driving

|⟨b̂⟩|2 =
CS

(1 + CS)2
Ω2

zpl

γ0γv
. (F8)

Considering the values given in the main text of CS = 250,
γ0/(2π) = 0.04GHz, γv/(2π) = 10GHz, and Ωzpl/(2π) =

1GHz we have |⟨b̂⟩|2 ≈ 0.01 ≪ 1.
Under the same conditions, at zero ZPL input bzpl = 0,

for small input vibrational excitation amplitudes ΩTHz ≪
γv we can approximate the solution of Eq. (F4) as

|bss| ≈ 2nS
CS

1 + CS
ΩTHz

γ0
(F9)

Plugging this solution into Eq. (F5), we obtain

⟨σ̂†σ̂⟩ss ≈ 2nS
C2
S

(1 + CS)2

(
ΩTHz

γ0

)2

. (F10)

Appendix G: THz cross section enhancement in a
resonant meta-material

As discussed in the main text, the only way to cou-
ple the molecule to an external THz radiative field is to
collect the THz radiation with an antenna and then to
compress it into a sub-wavelength region, where it can fi-
nally couple with the molecule. This configuration could
be naturally implemented by placing the molecules in a
resonant meta-material. These structures are typically
characterized by a gap of size d ∼ 1 − 10µm where the
oscillating electric field is confined [93–95]. Even if we fo-
cus here on a specific regime, our theory is fully general
and can be applied as well to IR transitions coupled to
plasmonic structure, surface-enhanced Raman scattering
phenomena, or other hybrid structures [13, 71, 106–108].

1. Capacitive coupling

To model the combined system, we start by noticing
that a THz cavity meta-material can be effectively mod-
eled as a simple LC circuit with parallel plates capacitor

[109–111]. A basic Hamiltonian description is then pro-
vided by a simple LC resonant circuit

HLC =
Q̂2

2C
+

Φ̂2

2L
, (G1)

where the charge and magnetic flux dynamical variables
follow the canonical commutation relations [Φ̂, Q̂] = iℏ
as in superconducting circuits [112].
The meta-material gap in this description becomes the

space between the parallel plates of the capacitor, where
d is then their relative distance. The molecules enclosed
directly inside the capacitor (as illustrated in Fig. 9(b))
are excited by the oscillating electric field of the struc-
ture. On the other side, the molecules can trigger an
oscillation in the cavity electric field by inducing some
charges on the metallic walls of the structure. This mech-
anism realizes what is called capacitive coupling between
the molecule and the metamaterial. It is implemented in
the Hamiltonian description shifting the capacitor charge
by the molecule’s induced charges, obtaining [113]

HLC 7−→

(
Q̂− Q̂in

)2

2C
+

Φ̂2

2L
. (G2)

The induced charge is, in general, a complicated function
of the molecule dipole transition moment and the geom-
etry of the metamaterial. However, in the simplest case
of infinite perfectly conducting walls, we have [113]

Q̂in ≈ eξv
d

(
b̂+ h.c.

)
. (G3)

Introducing the LC-circuit annihilation/creation oper-

ators ĉ = Q̂/
√
2ℏωLCC − i

√
ωLCC/(2ℏ)Φ̂ and assuming

that the RWA is valid, we have that

HLC ≈ ℏωLCĉ
†ĉ+ ℏgC

(
b̂ ĉ† + h.c.

)
. (G4)

Here we have introduced the meta-material circuit reso-
nant frequency ωLC = 1/

√
LC, and the molecule-circuit

capacitive coupling

ℏgC =

√
e2

2C
ℏωLC

ξv
d
. (G5)

As a last step, we introduce a direct drive of the LC
circuit by considering the term

HLC−drive = ℏΩLC cos(ωTHzt)
(
eiφĉ+ e−iφĉ†

)
. (G6)

The LC-Rabi frequency ΩLC is determined by the absorp-
tion/reflection coefficient of the metamaterial and can be
easily boosted by coupling it to a supplemental antenna
[80, 114]. The phase φ depends on whether the absorp-
tion occurs mostly due to the electric or magnetic field
and, without loss of generality, we fix φ = 0.
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2. Metamaterial-enhanced vibrational driving

We consider here the equations of motion deriving from
coupling the molecule to the LC metamaterial through
its vibrational dipole moment using the Hamiltonians in
Eqs. (G4)-(G6) together with the Stokes Hamiltonian in
Eq. (21)

i∂tb̂ =
(
∆v − i

γv
2

)
b̂+ gC ĉ+

gS
2
σ̂,

i∂tĉ =
(
∆LC − i

γLC
2

)
ĉ+ gC b̂+

ΩLC

2
.

(G7)

This equations are derived from the full master equation
description including full dissipations and assuming the
RWA in Eq. (G6), switching to a rotating frame where
∆LC = ωLC−ωTHz. Here we have also included the dissi-
pation for the LC circuit, for its dissipation rate is linked
to its resistance γLC = RC (or γLC = R/L dependently
if the decay channel is included in parallel or in series
in the circuit scheme). Since γLC/(2π) ∼ 1THz in typi-
cal subwavelength metamaterial structures [74], we have
that γLC ≫ ∆v,∆LC, gC , gS. Under such circumstances,
we can adiabatically eliminate the metamaterial degree
of freedom ĉ by setting ∂tĉ = 0. We thus obtain

ĉ ≈ − ΩLC

2(∆LC − iγLC/2)
− gC

∆LC − iγLC/2
b̂. (G8)

By inserting this expression in the other equation above,
we have

i∂tb̂ ≈
[
∆v + δωC − i

2
(γv + ΓC)

]
b̂+

gS
2
σ̂+

Ωeff

2
. (G9)

Here, we introduced the capacitive frequency shift, dissi-
pation, and effective driving

δωC = − g2C∆LC

∆2
LC + γ2

LC/4
,

ΓC =
4g2C
γLC

γ2
LC/4

∆2
LC + γ2

LC/4
,

Ωeff = −gCΩLC
∆LC

∆2
LC + γ2

LC/4
+ igCΩLC

γLC/4

∆2
LC + γ2

LC/4
.

(G10)

Assuming the THz-LC resonance condition ∆LC = 0
we immediately have δωC = 0 and ΓC = 4g2C/γLC ≈ 0.
Using Eq. (D1) to redefine ΩTHz we arrive to

|Ωeff | = 2gC
ΩLC

γLC
= ΩTHzGC , (G11)

where we introduced the capacitive gain factor

GC =

√
QLC

4παfs

σLC

d2
2e2

C

1

ℏωLC
. (G12)

Here, we have introduced the LC-metamaterial absorp-
tion cross section σLC, and we have linked it to the LC

Rabi frequency using Eqs. (34)-(D1). Moreover we have
introduced the LC-quality factor QLC = ωLC/γLC. From
the previous equation, we can derive the molecule’s ef-
fective THz drive after adiabatically eliminating the LC
circuit

H̃THz = GCℏΩTHz

(
b̂+ b̂†

)
. (G13)

3. Capacitive gain experimental estimation

Notice that by introducing the vacuum impedence
Zvac = 1/(cϵ0) ≈ 377 Ohm we can rewrite the capaci-
tive gain in an even more compact format

GC =

√
2QLC

σLC

d2
ZLC

Zvac
, (G14)

where ZLC =
√

L/C = 1/(CωLC). We remind here that
1Ohm = 1pF−1THz−1.
Interestingly, in the capacitive gain in Eq. (G14), the

capacitive gain of the cross section is not compared to
the whole size of the structure but only to its capacitive
gap size d (or distance between the capacitor electrodes).
This is a direct consequence of the sub-wavelength com-
pression of the electric field, leading to a notorious boost
in the light-matter coupling strength in the THz range
[74, 115, 116].
The dependence from the quality factor is instead rem-

iniscent of the physics of the Purcell effect [117] but in-
volving the absorption instead of the emission. For a
typical THz structure we have QLC ∼ 10 [74].
The last term in Eq. (G14) is instead the LC-

impedance contribution. Assuming a capacitance C ∼
320 aF [111, 118, 119], we obtain an impedance ZLC ≈
100Ohm and an impedance ratio of ZLC/Z0 ≈ 0.27.
Collecting all these estimates all together and assum-

ing a cross section σLC ∼ 90µm over a gap distance
d ∼ 1µm, we have that GC ≈ 22. Even if this struc-
ture’s cross section is quite large with respect to its cur-
rent realizations [80], this value can in principle grow up
to the maximum σmax

LC = 3/(8π)λ2
LC [79], where λLC =

2πc/ωLC. Having λLC ≈ 60µm we have a maximum
value of σmax

LC ≈ 430µm2. Assuming an even smaller ca-
pacitance (so high impedance resonator) of C ≈ 86 aF,
we have ZLC ≈ 375Ohm and ZLC/Z0 ≈ 1. With these
more favorable parameters, we can reach the maximum
capacitive gain at Gmax

C ∼ 100.
To summarize, enclosing the molecule in a resonant

THz metamaterial can boost the electric field driving the
molecule by a factor 102 thanks to the sub-wavelength
field compression in the meta-material.

Generalizing to Nmol molecules, the capacitive gain is
boosted by the collective enhancement factor

√
Nmol due

to the coupling to the same LC mode and the same Stokes
laser. Together with an improvement of the design of the
meta-material structure, increasing the cross sections and
the impedance, this analysis shows that such a system
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can be a viable route toward the implementation of a THz single photon detector.
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